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Abstract

The configuration interaction (CI) methods is an exact method to solve the non relativistic

Schrodinger equation, describing the wave function as a linear combination of Slater deter-

minants. Because the computation time grows factorially as the number of electrons, CI is

mostly used for relatively small systems. Density functional theory (DFT) rose as one of

the most used methods for computational quantum chemistry in the last 30 years. DFT

can describe a system’s properties with the electron density, which only depends of of three

coordinates. Due to its low computational costs it allows one to study bigger systems than

CI, however it does not have the same accuracy as the former. In this work we present a

methodology to calculate the overlap between electron configurations that have different

Kohn-Sham orbitals (KSO), where the KSO obtained from DFT are used to build Slater

determinants, and the overlap of these is calculated as in CI. The overlap tool application

is shown in the study of three different dimers, H2, N2, and Cr2, to review the collapse

phenomena of a polarized electron density into an indistinguishable unpolarized state. Our

results show how the collapse of a polarized state into an unpolarized solution does not

require a complete overlap.
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Chapter 1

Introduction

1.1 Quantum Mechanics

By the end of XIX century physicists were facing what are called, fundamental problems,

in the sense that the existent physical theories available could not be used to analyze these

problems, or the results obtained from them would be erroneous [1]. Among these problems

we have the black body radiation and the ultraviolet catastrophe, Compton scattering, and

the photoelectric effect. We will not attempt to solve any of these problems here, but

instead, we will review their story, and the paradigm changes that came as a consequence.

In 1860, Gustav Kirchhoff defined a black body as a system of infinitely small thickness

that completely absorbs all incident rays and neither reflects nor transmit any [2]. This

theoretical system, although non existent in nature, is a very important concept to under-

stand radiation emission and absorption. Almost 40 years later, Wilhelm Wien obtained

a formula to describe the spectrum of thermal radiation of a blackbody, this formula is

often referred as Wien’s distribution law, unfortunately it only yields correct results at

high frequencies [3]. In June of 1900 Lord Rayleigh derived an expression, using classical

arguments, that would eventually be known, until 1905 with help of Sir James H. Jeans,

as the Rayleigh–Jeans law, this formula failed to describe the blackbody radiation at high

frequencies [4], and it gave birth to the ultraviolet catastrophe, a consequence of the classi-

cal approach to describe the spectrum of thermal radiation of the blackbody. In December

of the same year, Max Planck derived what we know as Planck’s radiation law, an indis-

putably correct formula that has a very important caveat, a blackbody can only change its

energy in discrete amounts of energy, quantas of energy, proportional to the frequency of
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the associated radiation, this law can be reduced to Wien’s and Rayleigh formulas in the

proper limits of the frequency [5]. Planck received the 1918 Nobel prize in physics.

Classical electrodynamics predicts that a continuous light wave transfers energy to the

electrons on a material, and after accumulating enough energy, these electrons would be

emitted, inconveniently, this is not the case, but in 1905, Albert Einstein showed that

light can be considered “discrete packages”, later referred to as “photons” by Gilbert N.

Lewis, asides of the widely accepted wave theory of light, and that for an electron to be

emitted from a material it must be struck by one of this packages with sufficient energy

to release it from the material [6]. Einstein was awarded the 1921 Nobel in physics for his

discovery of the law of the photoelectric effect. Arthur H. Compton showed in 1923 that

when high energy light is scattered after colliding with an electron, the scattered light’s

energy depends on the scattering angle of the light particle, proving once again that light

should be considered as a particle, aside of being a wave. In his experiment X-rays were

used (≈ 17 keV) so that a graphite electrons can be considered free [7]. Compton received

the 1927 Nobel prize in physics for his discovery of this effect that bears his name.

Louis de Broglie proposed, in his doctoral thesis in 1924, that matter should behave as

a waves just as light behaves as a particle [8]. In 1927 Davisson and Germer showed that

electrons scattered by a surface of a crystal display a diffraction pattern, confirming that

matter does have undulatory properties [9]. de Broglie received the 1929 Nobel prize in

physics

These discoveries are the grounds for what we know as quantum mechanics, from the

discrete exchange of energy in radiation absorption to the corpuscular behaviour of light.

These results are not minuscule, they led to years of scientific and technological advances.

1.1.1 Schrödinger Equation

Quantum mechanics, although successful in explaining many phenomena that classical

mechanics failed to, was still a theory in development taking it first steps. In 1926, Er-

win Schrödinger proposed in a paper a derivation of a wave equation, today known as
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Schrödinger’s equation, and used it to find the correct non-relativistic energy eigenvalues

of Hydrogen-like atoms, where the quantization aspect came naturally on the solutions [10].

𝐻 |Ψ⟩ = 𝑖ℏ
𝑑

𝑑𝑡
|Ψ⟩ 1 (1.1)

𝐻 is the hamiltonian operator, which is made up of the different energies and interactions

of the system to consider, for a hydrogen atom, for example, we would have; the kinetic

energy of the nucleus, the kinetic energy of the electron, and the coulomb interaction

between the electron and the nucleus. As more particles get involved, this terms grow

bigger and the equation to solve becomes more complicated.

1.1.2 Born-Oppenheimer Approximation

As mentioned before in subsection 1.1.1, as the system grows in difficulty, so do the so-

lutions, and solving the Schrödinger equation becomes, and usually is, impossible to do

analytically. Consider a system like the benzene molecule where we have 12 nuclei with

42 electrons, this means that we have a total of 162 coordinates to solve the Schrödinger

equation for, this is a huge number of coordinates to work with, even with computational

tools.

In 1927, Max Born and Robert Oppenheimer proposed that due to the difference in

mass of the electrons and nuclei, the later can be treated as fixed in space, and that their

wave functions can be treated independently[11].

This approximation has great value in numerical methods, lets go back to our benzene

example: if we use the Born-Oppenheimer approximation we reduce the problem from 162

to 126 coordinates, this does not look as much but the computational complexity of most

numerical methods grows faster than the square of the number of coordinates.

1This notation was not used by Schrödinger, but developed by Paul Dirac to work on a the matrix

formulation of quantum mechanics.
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1.2 Density Functional Theory

As we have seen, solving the Schrödinger equation for a large system involves facing many

issues regarding computational efficiency. There is a way to circle around this problem;

lets consider that all the electrons in our system are altogether an electron gas, and that

all the important properties of our system can be determined in terms of functionals that

depend on the electron gas density. This method of working with quantum systems is

known as Density Functional Theory (DFT). In the following sections we will discuss the

most important parts of this method.

DFT is widely used not only by physicists, but by chemists and engineers, anyone who

is interested in the electronic properties of materials knows and uses this theory, to certain

extent.

1.2.1 Hohenberg-Kohn Theorem

The theorem that set the first stone for DFT to exist is the Hohenber-Kohn theorem, said

theorem states that the ground state energy is a unique functional of the electron density

[12]. Said density only depends on three coordinates.

𝐸 = 𝐸 [𝜌(®𝑟)] (1.2)

So far, DFT has reduced our 3𝑁-dimensional problem into a 3-dimensional one. But

what is the form of this magical functional? it is unknown, and must be approximated.

Life is never good, is it?

1.2.2 Kohn-Sham Theory

In 1965, W. Kohn and L. J. Sham showed that the electron density that minimizes the

ground state functional coincides with the true electron density, and that the problem can

be simplified from the many body interacting Hamiltonian into an elegant non-interacting

differential equation [13].
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[
𝑇 +𝑈𝑍 +𝑈𝐻 +𝑈𝑋𝐶

]
|𝜓𝑖⟩ = 𝜖𝑖 |𝜓𝑖⟩ (1.3)

𝑇 is the kinetic energy, 𝑈𝑍 is the Coulomb interaction with the Nuclei, 𝑈𝐻 is the

Hartree potential, which considers the repulsion between a KS orbital and the total electron

density, and 𝑈𝑋𝐶 is the exchange correlation (XC) potential, which is unknown and must

be approximated.

Finding a suitable exchange correlation potential is a hard task that has been object

of research for many scientists, and although nowadays we have access many different XC

potentials, the fact that there is no systematic way to improve an XC potential, means

that there is no guarantee that utilising a more complicated potential will be sufficient to

obtain better results overall [14].

It is important to point out that the differential equations for the Kohn-Sham orbitals

depend on the electron density that we are looking for, because of this, in order to find a

solution, there must be an iterative process; proposing a test electron density a first set of

Kohn Sham orbitals is obtained, from which a new electron density is calculated and then

repeat these steps until self consistency is achieved.

1.2.3 Self Interaction Error

Looking back into eq 1.3 , it is clear that there is a nonphysical effect in our equation. If

the Hartree potential describes the interaction between an electron and the total electron

density, then this electron is interacting with itself, this is commonly known as self inter-

action error (SIE). Interesting enough this is not a problem of the Kohn-Sham theory, but

of DFT ever since.
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Chapter 2

Dimers, Coulson-Fischer Point and

Overlaps

2.1 Dimers

A dimer is a molecule formed by two similar parts, either two same element atoms or two

identical molecules. The most famous dimer could be O2. Although conceptually simple,

dimers are very interesting systems to study, there are many papers studying many different

dimers with different computational approaches [15, 16, 17].

For two atoms to bond and form a dimer the shared electrons between the two parts

must have different spins. Let’s think about O2 again: Oxygen’s electron configuration is

1s22s22p4, because the 2p orbital fits 6 electrons, there are two electron spins not being

occupied which must be occupied by the second Oxygen’s outer electrons in order for a

bond to exist. If both Oxygen’s electrons occupy the same spin states, the highest occupied

molecular orbitals (HOMOs) associated with the parallel-spin staes do not participate in

bond formation. However, it is usually the case that orbitals below the HOMO level

participate in bond formation.

2.1.1 Wave Mechanics Perspective

Far Away Atoms

For two atoms that are separated enough for each of them to not interact with the other’s

electrons, if the polarization of the atoms is unknown, the wave function may be expressed

6



as a superposition of all possible states with the same total 𝑀𝑠.

Lets consider a two unpaired electrons system for simplicity:

|𝑈𝑃𝑂⟩ = 1
√

4

(
|↑⟩𝑎 |↓⟩𝑎 + |↑⟩𝑎 |↓⟩𝑏 + |↑⟩𝑏 |↓⟩𝑎 + |↑⟩𝑏 |↓⟩𝑏

)
(2.1)

Where |↑⟩𝑎, and |↓⟩𝑏 is a spin up electron localized around atom a, and a spin down

electron localized around atom b, respectively. Notice that, the second and third terms

are the classical representation of two well separated atoms. The first and fourth highlight

the inaccuracy in the stretch bond limit of single configuration composed of single particle

orbitals constrained to be symmetric. These terms correspond to anionic and cationic pairs

of atoms, or a zwitter ion configuration. In condensed matter physics these configurations

are also known as the upper Hubbard band. If we want the atoms to bond when they are

close together, we know their polarization must be antiparallel to each other, let atom a to

have an up total spin and atom b to have a down total spin:

|𝑃𝑂𝐿⟩ = |↑⟩𝑎 |↓⟩𝑏 1 (2.2)

The similarity of these wave functions can be calculated with the squared inner product:

⟨𝑃𝑂𝐿 |𝑈𝑃𝑂⟩ =
(
⟨↑|𝑎 ⟨↓|𝑏

) (
1
√

4

(
|↑⟩𝑎 |↓⟩𝑎 + |↑⟩𝑎 |↓⟩𝑏 + |↑⟩𝑏 |↓⟩𝑎 + |↑⟩𝑏 |↓⟩𝑏

))
=

1

2

(
𝛿𝑎,𝑎𝛿𝑏,𝑎 + 𝛿𝑎,𝑎𝛿𝑏,𝑏 + 𝛿𝑎,𝑏𝛿𝑏,𝑎 + 𝛿𝑎,𝑏𝛿𝑏,𝑏

)
⟨𝑃𝑂𝐿 |𝑈𝑃𝑂⟩ = 1

2

(
0 + 1 + 0 + 0

)
⟨𝑃𝑂𝐿 |𝑈𝑃𝑂⟩ = 1

2

⟨𝑃𝑂𝐿 |𝑈𝑃𝑂⟩2 = 1

4
(2.3)

1Here, we use the three letter acronyms “UPO” unconventionally to designate the in the infinite bond-

length limit, there are a number of states that are degenerate with the ground state, and “POL” to designate

that some of these states correspond to mixtures of open shell states.
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This is an expected result, we can see the |↑⟩𝑎 |↓⟩𝑏 state contributes a quarter to the

unpolarized wave function.

In general, the unpolarized state is given by:

|𝑈𝑃𝑂⟩ = 1

2𝑁

∑︁
𝜃𝜖𝑆2𝑁

𝑁∏
𝑗

|↑⟩𝜃 ( 𝑗) |↓⟩𝜃 ( 𝑗) (2.4)

where 𝑁 is the number of unpaired electrons of one atom, 𝜃 is an array of 2𝑁 localizations

for each electron (either around atom a or b), 𝑆2𝑁 is the array of all the possible arrays

of combinations for 𝜃. From this definition we can easily see that any 𝜃 contributes 1
2𝑁

to the unpolarized wave function. This means that the probability of finding the specific

state |𝑃𝑂𝐿⟩ = ∏𝑁
𝑗=1 |↑⟩𝑎 𝑗

|↓⟩𝑏 𝑗
is 1

22𝑁
. In table 2.1 we can review the expected overlaps of

polarized and unpolarized wave functions, as well as the related probability for systems

with different amounts of unpaired electrons.

Table 2.1: Expected Overlaps and Probabilities

for 2N Unpaired Electron Systems

2N Overlap Probability

2 1√
4

1
4 = 0.25

4 1√
16

1
16 = 0.0625

6 1√
64

1
64 = 0.015625

12 1√
4096

1
4096 = 0.24414062 × 10−3

Very Close Atoms

As two polarized atoms get closer, their electrons start to interact with the other atom,

making it impossible to distinguish to which atom they belong to; because we are interested

in bonded atoms, and the electrons become indistinguishable, the wave function of two

originally polarized atoms that have bonded would be:

8



|Ψ⟩ = |↑⟩ |↓⟩ (2.5)

There are no atom indices as before because the particles are indistinguishable.

Equation (2.5) matches the wave function of an unpolarized pair of indistinguishable

atoms with total spin of zero; meaning that the inner product of these wave functions is

equal to one. A very insightful interpretation of this result is that as two polarized atoms

get closer to form a dimer, the overall wave function of the systems starts to collapse into

that of a pair of unpolarized atoms.
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2.2 Coulson Fischer Point

In 1949, Coulson and Fischer published a paper on how to build, from molecular orbital

wave functions, an accurate wave function that would take into account the repulsion

between electrons as the atoms are separated, and applied it to H2 obtaining amazing

results [18]. Unlike the other methods at the time, Coulson-Fischer theory provided a

qualitatively correct description of the molecular dissociation process [19]. It should be

noted that, like many good ideas in science, Heitler and London may have been the first to

describe a special case for this and that understanding these ideas is important from the

standpoint of understanding Mott Insulators in solid state physics [20].

According to Coulson and Fischer, a wave function of the form:

|Ψ⟩ = 1

2
( |𝜙𝑎 (𝑟1)⟩ + |𝜙𝑏 (𝑟1)⟩) · ( |𝜙𝑎 (𝑟2)⟩ + |𝜙𝑏 (𝑟2)⟩) · 𝑆𝑝𝑖𝑛𝑇𝑒𝑟𝑚 (2.6)

where |𝜙𝑎⟩ , |𝜙𝑏⟩ are the real orbitals of an electron around atom a, and atom b, respectively,

does not considers the repulsion between electrons as the atoms are separating. Coulson

and Fischer proposed that, instead of using equation (2.7), the wave function could have

the form:

|Ψ⟩ = 1

1 + 𝜆𝑆 + 𝜆2
( |𝜙𝑎 (𝑟1)⟩ + 𝜆 |𝜙𝑏 (𝑟1)⟩) · ( |𝜙𝑏 (𝑟2)⟩ + 𝜆 |𝜙𝑎 (𝑟2)⟩) · 𝑆𝑝𝑖𝑛𝑇𝑒𝑟𝑚 (2.7)

where 𝜆 is a parameter that is not necessarily one, and 𝑆 is the overlap between orbitals

|𝜙𝑎⟩ and |𝜙𝑏⟩. The distance at which electrons start localizing around a nucleus each, that

equation (2.7) starts to fail, or that 𝜆 is not equal to one is known as the Coulson-Fischer

(CF) point, which has been an interesting reference point for the study of dimers and their

excited states[21].

2.3 Motivation

Here we must ask ourselves, how close is enough for a dimer’s polarized solution to collapse

onto a bonded pair of unpolarized atoms? Is DFT going to offer a physically accurate
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answer about the similarity of the polarized and unpolarized solutions for pairs of same

element atoms as they get closer together?

2.4 Overlap

Unlike witches and ducks, we can’t just throw two electron densities into a large scale and

compare them, we must do it differently.

As we saw in subsection 1.2.2, DFT can be worked with orbitals that are directly related

to the electron density. But how do we arrange our orbitals in order to have an organized

way to compare two densities?

2.4.1 Slater Determinant

Because electrons are fermions, their wave function must be anti-symmetric in order to

comply with Pauli’s exclusion principle. For two electrons, we could have:

|Ψ⟩ = |𝜒1(𝑟𝑎)⟩ |𝜒2(𝑟𝑏)⟩ (2.8)

or

|Ψ⟩ = |𝜒2(𝑟𝑎)⟩ |𝜒1(𝑟𝑏)⟩ (2.9)

But neither of these wave functions comply with Pauli’s exclusion principle, because

they are not anti-symmetric.

We can write a linear combination to find a solution that is anti-symmetric:

|Ψ⟩ = 1
√

2

(
|𝜒1(𝑟𝑎)⟩ |𝜒2(𝑟𝑏)⟩ − |𝜒2(𝑟𝑎)⟩ |𝜒1(𝑟𝑏)⟩

)
(2.10)

This wave function is anti-symmetric, does not favor any electron to occupy certain

orbital, and vanishes if the electrons occupy the same orbital.

This expression can be written in a different form:
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|Ψ⟩ = 1
√

2

������|𝜒1(𝑟𝑎)⟩ |𝜒1(𝑟𝑏)⟩

|𝜒2(𝑟𝑎)⟩ |𝜒2(𝑟𝑏)⟩

������ (2.11)

Equation (2.11) is known as a Slater determinant for a two particle system. Slater

introduced this notation in 1929, in order to ensure the anti-symmetry of many-electron

systems [22], but it can be used for any kind of fermions. An N-fermionic system Slater

determinant looks like:

|Ψ⟩ = 1
√
𝑁!

������������
|𝜒1(𝑟𝑎)⟩ |𝜒1(𝑟𝑏)⟩ · · · |𝜒1(𝑟𝑁 )⟩

|𝜒2(𝑟𝑎)⟩ |𝜒2(𝑟𝑏)⟩ · · · |𝜒2(𝑟𝑁 )⟩
...

...
. . .

...

|𝜒𝑁 (𝑟𝑎)⟩ |𝜒𝑁 (𝑟𝑏)⟩ · · · |𝜒𝑁 (𝑟𝑁 )⟩

������������
(2.12)

Or, in Leibniz notation:

|Ψ⟩ = 1
√
𝑁!

∑︁
𝜎𝜖𝑆𝑁

Sign(𝜎)
𝑁∏
𝑗

|𝜒𝜎( 𝑗) (𝑟 𝑗 )⟩ (2.13)

where 𝜎 is an array and 𝑆𝑁 is an array of all the permutations of {1, 2, · · · , 𝑁}, and has

𝑁! cardinality. For example, for 𝑁 = 1, 2, 3 we would have the following 𝜎’s:

Table 2.2: 𝜎(1), 𝜎(2), 𝜎(3)

N 1 2 3 Sign(𝜎)

𝜎1 {1} {1,2} {1,2,3} +

𝜎2 {2,1} {1,3,2} -

𝜎3 {3,1,2} +

𝜎4 {3,2,1} -

𝜎5 {2,3,1} +

𝜎6 {2,1,3} -

Do not confuse 𝜎𝑖 with 𝜎( 𝑗), the latter refers to the 𝑗-th element of the current 𝜎,
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while the former is just used for this example as it is unnecessary to use the 𝑖 index for our

notation.

From linear algebra we know that a determinant can be obtained as the summation of

the product of cofactors (any element of a matrix, preceded by a − or a +, depending on the

row and column) and their minor (the submatrix formed by removing the row and column

related to its cofactor), over any row or column. From this property of determinants

we can obtain a very insightful idea of fermionic systems: the Slater determinant of an

N-fermionic system can be broken down into N Slater determinants of order N-1, if the

N-fermionic Slater determinant is non zero, there must be at least one non-zero minor as

well [23].

2.4.2 Inner Product of Slater Determinants

Before we look for the expression to calculate the inner product, or overlap, of two different

Slater determinants, we must show that equation (2.13) is correctly normalized.

Same Slater Determinant

⟨Ψ|Ψ⟩ = 1
√
𝑁!

∑︁
𝜆𝜖𝑆𝑁

Sign(𝜆)
𝑁∏
𝑗

⟨𝜒𝜆( 𝑗) (𝑟 𝑗 ) |
1

√
𝑁!

∑︁
𝜎𝜖𝑆𝑁

Sign(𝜎)
𝑁∏
𝑘

|𝜒𝜎(𝑘) (𝑟𝑘 )⟩

=
1

𝑁!

∑︁
𝜆,𝜎𝜖𝑆𝑁

Sign(𝜆)Sign(𝜎)
𝑁∏
𝑗 ,𝑘

⟨𝜒𝜆( 𝑗) (𝑟 𝑗 ) |𝜒𝜎(𝑘) (𝑟𝑘 )⟩

Here we must point out that bras and kets permute until they are matched with the

correct particle. This means that having to products, one for 𝑘 and 𝑗 , has no sense, as we

only need one.

⟨Ψ|Ψ⟩ = 1

𝑁!

∑︁
𝜆,𝜎𝜖𝑆𝑁

Sign(𝜆)Sign(𝜎)
𝑁∏
𝑗

⟨𝜒𝜆( 𝑗) (𝑟 𝑗 ) |𝜒𝜎( 𝑗) (𝑟 𝑗 )⟩
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If the set {|𝜒𝑖⟩} is an orthonormal set, then:

⟨𝜒𝜆( 𝑗) |𝜒𝜎( 𝑗) (𝑟𝑘 )⟩ = 𝛿𝜆( 𝑗),𝜎( 𝑗)

→
𝑁∏
𝑗

⟨𝜒𝜆( 𝑗) (𝑟 𝑗 ) |𝜒𝜎( 𝑗) (𝑟 𝑗 )⟩ = 𝛿𝜆,𝜎𝜖𝑆𝑁

→
∑︁

𝜆,𝜎𝜖𝑆𝑁

Sign(𝜆)Sign(𝜎)𝛿𝜆,𝜎 =
∑︁
𝜆𝜖𝑆𝑁

1 = 𝑁!

⟨Ψ|Ψ⟩ = 1 (2.14)

Different Slater Determinant

Before we get to the general case, lets for a second consider a two particle problem to give

us some insight:

⟨Φ|Ψ⟩ = 1

2

(
⟨𝜉1(𝑟1) |𝜒1(𝑟1)⟩ ⟨𝜉2(𝑟2) |𝜒2(𝑟2)⟩ − ⟨𝜉2(𝑟1) |𝜒1(𝑟1)⟩ ⟨𝜉1(𝑟2) |𝜒2(𝑟2)⟩

− ⟨𝜉1(𝑟1) |𝜒2(𝑟1)⟩ ⟨𝜉2(𝑟2) |𝜒1(𝑟2)⟩ + ⟨𝜉2(𝑟1) |𝜒2(𝑟1)⟩ ⟨𝜉1(𝑟2) |𝜒1(𝑟2)⟩
)

as we know, a braket represents an integral, which means that two brakets with the

same orbitals have the exact same value regarding the particle they are associated.

→ ⟨Φ|Ψ⟩ = 1

2

(
⟨𝜉1 |𝜒1⟩ ⟨𝜉2 |𝜒2⟩ − ⟨𝜉2 |𝜒1⟩ ⟨𝜉1 |𝜒2⟩

− ⟨𝜉1 |𝜒2⟩ ⟨𝜉2 |𝜒1⟩ + ⟨𝜉2 |𝜒2⟩ ⟨𝜉1 |𝜒1⟩
)

=
1

2

(
2 ⟨𝜉1 |𝜒1⟩ ⟨𝜉2 |𝜒2⟩ − 2 ⟨𝜉1 |𝜒2⟩ ⟨𝜉2 |𝜒1⟩

)
= ⟨𝜉1 |𝜒1⟩ ⟨𝜉2 |𝜒2⟩ − ⟨𝜉1 |𝜒2⟩ ⟨𝜉2 |𝜒1⟩

(2.15)

As we can notice this has a shape that we know.

⟨Φ|Ψ⟩ =

������⟨𝜉1 |𝜒1⟩ ⟨𝜉1 |𝜒2⟩

⟨𝜉2 |𝜒1⟩ ⟨𝜉2 |𝜒2⟩

������ (2.16)
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This is no proof that in general we would have a determinant, but it gives us a hint of

what to look for.

Now we can go to the general two Slater determinant product.

⟨Φ|Ψ⟩ = 1
√
𝑁!

∑︁
𝜆𝜖𝑆𝑁

Sign(𝜆)
𝑁∏
𝑗

⟨𝜉𝜆( 𝑗) (𝑟 𝑗 ) |
1

√
𝑁!

∑︁
𝜎𝜖𝑆𝑁

Sign(𝜎)
𝑁∏
𝑘

|𝜒𝜎(𝑘) (𝑟𝑘 )⟩

=
1

𝑁!

∑︁
𝜆,𝜎𝜖𝑆𝑁

Sign(𝜆)Sign(𝜎)
𝑁∏
𝑗 ,𝑘

⟨𝜉𝜆( 𝑗) (𝑟 𝑗 ) |𝜒𝜎(𝑘) (𝑟𝑘 )⟩

Once again, as we know bras and kets permute until they are matched with the correct

particle, so we can drop a product.

⟨Φ|Ψ⟩ = 1

𝑁!

∑︁
𝜆,𝜎𝜖𝑆𝑁

Sign(𝜆)Sign(𝜎)
𝑁∏
𝑗

⟨𝜉𝜆( 𝑗) (𝑟 𝑗 ) |𝜒𝜎( 𝑗) (𝑟 𝑗 )⟩

Notice that, because brakets don’t really care for the coordinate the orbital is dependent

on, i.e. 𝑟 𝑗 , we can drop that from our expression.

⟨Φ|Ψ⟩ = 1

𝑁!

∑︁
𝜆,𝜎𝜖𝑆𝑁

Sign(𝜆)Sign(𝜎)
𝑁∏
𝑗

⟨𝜉𝜆( 𝑗) |𝜒𝜎( 𝑗)⟩

For any 𝜆, 𝜎 pair, we can permute brackets until we recover what would appear to be

an arbitrary 𝜆. As an example, consider we want to permute brakets in order to have our

bra’s with the orbitals ordered as their labels, i.e. 𝜆 = {1, 2, · · · , 𝑁}, which always has a

positive permutation Sign, Sign(𝜆) = +, for N=3:
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Table 2.3: Permutations for 𝜆 = {3, 2, 1}

𝜆 𝜎’s Sign(𝜆)Sign(𝜎) 𝜎′ Sign(𝜎′)

{3,2,1} {1,2,3} - {3,2,1} -

{1,3,2} + {2,3,1} +

{3,1,2} - {2,1,3} -

{3,2,1} + {1,2,3} +

{2,3,1} - {1,3,2} -

{2,1,3} + {3,1,2} +

this means that for every time we sum over 𝜎 for any 𝜆, we recover the same components

with the same Sign as for the original, and arbitrary, 𝜆′ = {1, 2, · · · , 𝑁}:

→
∑︁

𝜆,𝜎𝜖𝑆𝑁

Sign(𝜆)Sign(𝜎)
𝑁∏
𝑗

⟨𝜉𝜆( 𝑗) |𝜒𝜎( 𝑗)⟩ = 𝑁!
∑︁
𝜎𝜖𝑆𝑁

Sign(𝜎)
𝑁∏
𝑗

⟨𝜉 𝑗 |𝜒𝜎( 𝑗)⟩

→ ⟨Φ|Ψ⟩ =
∑︁
𝜎𝜖𝑆𝑁

Sign(𝜎)
𝑁∏
𝑗

⟨𝜉 𝑗 |𝜒𝜎( 𝑗)⟩ (2.17)

Equation (2.17) is Leibniz notation for a determinant. If we compare it with equation

(2.13), the (𝑟 𝑗 ) would be replaced with the ⟨𝜉 𝑗 | as the naturally ordered component, while

the |𝜒𝜎( 𝑗)⟩ is the array dependent component just as before.

This result indicates that, in order to compare two electron densities, we can build

a matrix with the overlap of the Kohn-Sham orbitals of each density, and calculate the

determinant of this overlap matrix.

⟨Φ|Ψ⟩ =

������������
⟨𝜉1 |𝜒1⟩ ⟨𝜉1 |𝜒2⟩ · · · ⟨𝜉1 |𝜒𝑁⟩

⟨𝜉2 |𝜒1⟩ ⟨𝜉2 |𝜒2⟩ · · · ⟨𝜉2 |𝜒𝑁⟩
...

...
. . .

...

⟨𝜉𝑁 |𝜒1⟩ ⟨𝜉𝑁 |𝜒2⟩ · · · ⟨𝜉𝑁 |𝜒𝑁⟩

������������
(2.18)

This result has been used before by Michalak, and peers [24].
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Chapter 3

Methodology

3.1 NRLMOL

The computational tool used to perform DFT calculations presented in this work is the

Naval Research Laboratory Molecular Orbital Library (NRLMOL)[25, 26]. NRLMOL is a

massively parallel DFT code based on the Kohn-Sham formulation, which solves the Kohn-

Sham equations by expressing the KS orbitals as linear combinations of Gaussian orbitals

[27].

The exchange correlation potential used was PBE-GGA (Perdew–Burke-Ernzerhof, Gen-

eral Gradient Approximation). The overlap tool has been developed to be used on Kohn-

Sham orbitals obtained from any potential, and we will not worry about the differences

that could be shown from using different potentials in this work. The electronic energy

optimization were done with a convergence criteria of 0.100𝑥10−7 Ha.

The overlap of the Slater determinants has been calculated using the methodology

described in 2.4.2. The computational tool that performs this task has been implemented

into NRLMOL, along with other features in order to automatize pre-processing needs, such

as gathering and renaming of WFOUT files, building directories and writing files with

information regarding the overlap calculation.

3.2 Dimer Calculations

In order to compare the Slater determinants of polarized and unpolarized atoms, NRL-

MOL allows us to pick the kind of polarization we are interested in, either up, down or
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unpolarized.

As we intended to study the collapse of a polarized system into a bonded pair of un-

polarized atoms, we performed two sets of calculations, following a series of steps, editing

some of the input files of NRLMOL:

1. Start a calculation with two atoms of the same element.

2. Edit the SYMBOL file to include more calculations, bringing the atoms together.

3. Edit the first line of the SYMBOL file to SCF-ONLY.

4. Edit the RUNS file to start our first calculation using a Least Square Fit.

5. Save the wave function file (WFOUT) with an appropriate name to remember to

which calculation it is associated.

6. Repeat until all calculations are done.

7. On the SYMBOL file, substitute the first UPO flag of each calculation for SUP and

the second one for SDN.

8. Repeat from step 4 to 7.

The energies of each calculation can be reviewed on the ALL-FORCES file.

3.3 Overlap Calculations

Once we had our wave function files from each calculation, finding the overlap between two

of these files is fairly easy:

1. Edit the MODE file to the overlap mode (3).

2. Save all wavefunction files on a new directory.

3. Edit the RUNS file to start from the first calculation.
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4. Copy the pair of wave function files associated with the first calculation to the current

directory.

5. Run the calculation, the overlap can be found on the overlap file.

6. Edit the RUNS file to do the following calculation.

7. Delete all the wave function files in the current directory.

8. Copy the pair of wavefunction files associated with the following calculation to the

current directory.

9. Repeat from step 5 to 8.

3.4 Hysteresis Calculations

An interesting test that can be performed to show how the polarized wave function collapses

into an unpolarized is to bring together the two polarized atoms, once they pass through

the CF point, we start separating them again and show that the energy is now the one

of an unpolarized pair of atoms, this is similar to the magnetic hysteresis phenomena, but

instead of having a physical defect we have the collapse of the wave function. To do this

test we follow the next steps:

1. Start a calculation with two atoms of the same element, one must have an SUP flag

and the other an SDN one separated far away.

2. Edit the SYMBOL file to include more calculations, bringing the atoms together

beyond the CF point.

3. Include calculations separating the atoms, these must have UPO flags (this does not

force the atoms to be unpolarized but takes out the restriction of polarization if they

are far enough).
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4. Edit the first line of the SYMBOL file to SCF-ONLY.

5. Edit the RUNS file to start our first calculation using a Least Square Fit.

6. Repeat until all calculations are done.

7. Repeat all steps, but in step 3, instead of going beyond the CF point, start separating

the atoms before the CF point is reached.

You can find the SYMBOL, ISYMGEN and runit files to do either the energies or the

hysteresis calculations for Cr2 on my github:

“https://github.com/JGustavoBFlores/Cr2 Dimer Input Files”1. According to which cal-

culation you want to do, rename the respective SYMBOL file to SYMBOL, these would

work with any NRLMOL version. For the overlap calculation, contact me through github

to receive a copy of the overlap code.

These calculations will show two different curves: both will be along the polarized curve

up to the CF point, if the CF point is reached, we should see the energy curve go back along

the unpolarized energy curve, if the CF point is never reached, the energy curve should go

back along the polarized curve again.

1If the repository is unavailable, contact me through github.
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Chapter 4

Results

4.1 H2

The H2 dimer, although being a simple and the smallest dimer in nature, still draws the

attention of many researchers from different areas, from chemists to astrophysicists, who

basically do far far away spectroscopy or past spectroscopy if you are a relativity fan [28].

An important remark of the importance of H2 lies in how the decomposition of H2 to

atomic H is related to the loss of water in any planet, studies have been done about Mars

for example [29, 20].

Figure 4.1: H2 Potential Curves

As we can see from figure 4.1, the energy curves of the polarized and unpolarized states

match together from very far away, compared with the bond distance of 1.42 a.u. The
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energies match up at 3.0. a.u., which for our further analysis will be referred to as the

CF point for H2. At 3.2 a.u. the energies difference is 0.85𝑥10−3 Ha, relatively big for our

convergence criteria, this indicates that our Slater determinants must be different, but how

much?

Figure 4.2: H2 Overlap and Energy Difference

On figure 4.2 we have two curves to compare how the difference between the polarized

and unpolarized energies, and the overlap or similitude of Slater determinants relate to

each other. As we can see, as long as the energies difference is zero, the overlap remains as

one. Once the energy difference is non zero, as we can see starting at 3.2 a.u., the Slater

determinants start to differ. For 3.2 a.u. we have an overlap of 0.8841. The overlap of

calculations beyond 4.00 a.u. are shown in the following figure:
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Figure 4.3: H2 Overlaps beyond 4.0 a.u.

Because H has a single electron, the behaviour of the overlap between unpolarized

and polarized states at an infinite separation can be explained by using subsection 2.1.1

description. We can extrapolate from the data shown on figure 4.3, that at an infinite

distance, the overlap matches 1
4 , as predicted in subsection 2.1.1.

Figure 4.4: H2 Beyond the CF Point Figure 4.5: H2 Before the CF Point

In figure 4.4 we show how, after bringing the atoms closer (blue trajectory) than the

CF point, our polarized Slater determinant in fact turns into the unpolarized one, and by

23



separating (red trajectory) the atoms, we do not recover the polarized energies but the

unpolarized ones. Figure 4.5 shows how if we start separating (red trajectory) the atoms

before reaching the CF point, the energy follows the same curve in the opposite direction

on each site, remaining in the polarized curve. This analysis shows us how the collapse of

the polarized Slater determinant into the unpolarized one could not occur at 3.2 a.u., it

must happen with a larger overlap than 0.8841, at least for this system.

4.2 N2

Nitrogen is perhaps one of the most important elements in the modern world, from medical

applications to electronics and fertilizers, the interest on Nitrogen is not constrained to its

atomic presentation, but the dimer and the family of nitrogen oxides (NOx ) [30], besides

the many applications, Nitrogen is also of interest to the environmental scientists because

of its relation with the green house effect, as human activities have affected the natural

cycle of Nitrogen [31]. Nitrogen’s electronic configuration is 1s22s22p3, the three electrons

on the 2p orbital energy level are unpaired.

Figure 4.6: N2 Potential Curves
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N2 energy curves hold the same shape as H2, the polarized solution collapsed into the

unpolarized solution at about twice of the bond distance. The energies exactly match at

2.8 a.u., while at 3.0 a.u. the difference is of 0.14𝑥10−2 Ha, which is big for our convergence

criteria, as it happened in H2.

Figure 4.7: N2 Overlap and Energy Difference

As we can see from figure 4.7, at 2.8 a.u. we do have a perfect match in the overlap

and the energies, meaning our polarized Slater determinant completely collapsed into the

unpolarized one, we can confirm this with figure 4.9, whose analysis is ahead. At 3.0 a.u.,

we find an overlap of 0.8097, considering our results from H2, this overlap should not be

enough for the collapse of the polarized Slater determinant into the unpolarized one to

happen.
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Figure 4.8: N2 Overlaps beyond 4.0 a.u.

Because N has a three unpaired electrons, the behaviour of the overlap between unpolar-

ized and polarized states at an infinite separation, according to subsection 2.1.1 1
23

= 0.125.

We can extrapolate from the data shown on figure 4.8, that at an infinite distance, the

overlap matches 1
26

, as predicted in table 2.1. Because single atoms of Nitrogen are natu-

rally polarized, separating two bonded Nitrogen atoms, while fixing the magnetic moment

to zero, so that each atom remains unpolarized is not an easy task.

Figure 4.9: N2 Beyond the CF Point Figure 4.10: N2 Before the CF Point
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In figures 4.9 and 4.10 we have the have repeated the hysteresis test for the Nitrogen

dimer. As it happened with H2, Figure 4.10 points out that our polarized solution does not

decay into the unpolarized at 3.0 a.u., as mentioned in the overlap analysis, the collapse

must happen in some point in between 2.8 and 3.0 a.u.

4.3 Cr2

Chromium dimer has been subject of interest of many chemists and physicists, because of

its peculiar electronic structure, magnetic properties, and potential energy curve [32].

The electronic configuration of Chromium is 1s22s22p63s23p63d54s1, with twenty four

electrons, where six of these are unpaired, these electrons spins always point in the same

direction on an isolated atom, which gives Chromium its magnetic properties. It is impor-

tant to notice that the 3d orbital can hold five electrons per spin, but Chromium has only

five electrons on the 3d orbital, and a single electron in the 4s orbital, because this is a more

stable configuration than having a pair of paired electrons and four unpaired electrons on

the 3d orbital. The bond of two Chromium atoms depends on the spin orientation of these

unpaired atoms, as we saw on chapter 2.
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Figure 4.11: Cr2 Potential Curves

As we can see from figure 4.11, the polarized state is, generally, more stable than

the unpolarized one. As we mentioned before, single Chromium atoms tend to be po-

larized, forcing an unpolarized solution for this system at a large separation goes against

Chromium’s nature, that is why the unpolarized energy curve differs so much from the

polarized one, and it is very difficult to achieve convergence for an unpolarized calculation

at these separations. Our energy curves match around 2.8 a.u., and the obtained bond

distance is around 3.17 a.u., which coincides with the experimentally reported [33]. A very

interesting fact to take from this figure is that, even at the most stable point for Cr2, the

polarized and unpolarized have different energies, which indicates they have different Slater

determinants.
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Figure 4.12: Cr2 Overlap and Energies Difference

As predicted in the analysis of figure 4.11, the Slater determinants of both calculations

are different at 3.06 a.u., with an overlap of 0.5088. At 2.86 a.u. we find matching energies,

but an overlap of 0.9441, which indicates our polarized solution has not collapsed into

the unpolarized solution completely. Will this overlap be enough for the polarized Slater

determinant to swap from the polarized energy curve into the unpolarized one?
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Figure 4.13: Cr2 Overlaps beyond 4.0 a.u.

As Nitrogen, Chromium has more than one unpaired electron, it has six unpaired elec-

trons, this means that the overlap squared between unpolarized and polarized states at an

infinite separation, is 1
212

= 0.244 × 10−3. Because single atoms of Chromium are naturally

polarized, separating two bonded Chromium atoms, while fixing the magnetic moment so

that each atom remains unpolarized is an even harder task than for Nitrogen.

Figure 4.14: Cr2 Beyond the CF Point Figure 4.15: Cr2 Before the CF Point

We conclude from figure 4.14, that the overlap of 0.9441 is enough for the collapse to
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happen. This indicates that it is not mandatory for the polarized solution to completely

converge into the unpolarized state for a switch of energy curves to happen. From figure

4.15, we can conclude that having two Chromium atoms with different polarizations at 3.06

a.u., which is closer than the experimentally reported bond distance [33], is not sufficient

for a bond to be formed. We could deduce that there must exist a point where this also

happens for H2 and N2, with the caveat this result is no proof of a general behaviour of

dimer’s Slater determinants.

4.4 Dimer’s Bond Lengths

In table 4.1, we show the bond lengths , using the same converge criteria as on our past

calculations, as well as other computational and experimental data to compare with.

Table 4.1: Dimers Bond Lengths

Dimer Our Results (a.u.) Computational (a.u.) Experimental (a.u.)

H2 1.42 1.401 (ref: [34]) 1.400 (ref: [35])

N2 2.085 2.475 (ref: [36]) 2.074 (ref: [37])

Cr2 3.091 3.250 (ref: [38]) 3.174 (ref: [39])

As we can see, our calculations are in very good agreement with the experimental results.

Our H2, N2, and Cr2 calculations have percent errors of 1.42%, 0.53%, 2.61%, respectively.
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Chapter 5

Concluding Remarks

5.1 Significance of Our Results

As we have seen in our three different systems, finding the Coulson-Fischer point is not a

task to rely on one method. There are cases where, although the energies of polarized and

unpolarized states are very close or even equal, their Slater determinants are different and

there is not decay into the unpolarized solution. Empirically, we could point out that the

overlap squared of Slater determinants for polarized and unpolarized solutions of a dimer

seems to follow the shape of the error function, converging to 1
2𝑁

, where 𝑁 is the number of

unpaired electrons per atom from the dimer, as we have seen in our three examples. We have

shown that there is a relation between the energy differences and the overlap of unpolarized

and polarized Slater determinants. The collapse of a polarized Slater determinant into an

unpolarized one does not require a perfect overlap. Studying the overlap of polarized and

unpolarized states for a dimer at large separations becomes a harder task if there are more

than one unpaired electrons per atom.

5.2 Applications and Future Work

The overlap tool that was developed for this work has served for research of other systems,

such as ozone (O3), for which the overlap machinery was used in order to calculate the

overlap matrix between two different magnetic states. Another system that has been worked

on is the decay of OH– with H3O
+ into 2 H2O, in hopes to find a relation between the

overlap of these systems and the pH of water. Introducing symmetry into the overlap
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machinery, as well as as a parallel version should be among the next steps for the project.

The overlap tool will also be implemented into the FLOSIC methodology [40].
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Chapter 6

Related Projects

Along with the work presented here, Gustavo Bravo was involved in other research projects:

1. G. Bravo coauthored the paper “Downward quantum learning from element 118:

Automated generation of Fermi–Löwdin orbitals for all atoms” [23]. In this paper,

a new algorithm to automate the construction of initial points and orbitals for all

elements of the periodic table, starting from the largest 118 element Oganesson Og is

proposed. Once the orbitals for Og are found, initial points and orbitals for the 117

element can be proposed, and so on for all elements of the periodic table. G. Bravo’s

contributions to this project were related to the software development.

2. As mentioned in 5.2, G. Bravo’s overlap tool was used in a research project on the

ozone molecule. In this project, the two antiferromagnetic states (|𝐴𝐹↑↓⟩ , |𝐴𝐹↓↑⟩)

and the pure singlet state (|00⟩) are compared using the overlap machinery. Contrary

to what is usually supposed, it was obtained that ⟨𝐴𝐹↑↓ |00⟩ = ⟨𝐴𝐹↓↑ |00⟩ ≠ 0 and

⟨𝐴𝐹↑↓ |𝐴𝐹↓↑⟩ ≠ 0.1

1This project’s results have not been published as of the publication of this thesis.
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